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In order to extend the greatly simplified Smoluchowski model for chemical reaction rates it is necessary to
incorporate many-body effects. A generalization with this feature is the so-called trapping model in which
random walkers move among a uniformly distributed set of traps. The solution of this model requires consid-
eration of the distinct number of sites visited by a singlstep random walk. A recent analy$id. Larralde
et al, Phys. Rev. A5, 1728(1992] has considered a generalized version of this problem by calculating the
average number of distinct sites visited Nyn-step random walks. A related continuum analysis is given in
[A. M. Berezhkovskii, J. Stat. Phy36, 1089(1994]. We consider a slightly different version of the general
problem by calculating the average volume of the Wiener sausage generated by Brownian particles generated
randomly in time. The analysis shows that two types of behavior are possible: one in which there is strong
overlap between the Wiener sausages of the particles, and the second in which the particles are mainly
independent of one another. Either one or both of these regimes occur, depending on the diff8h8&8s.
651X(96)04706-X

PACS numbgs): 05.40+j, 82.20.Db

[. INTRODUCTION of a Wiener sausage poses rather formidable mathematical
problems except in one dimension where all calculations can
Perhaps the earliest microscopic model for the kinetics irbe carried out exactly because the volume can be identified
diffusion-limited reactions is that due to Smoluchowskias the span of a diffusion procei$7]. Calculations of the
[1,2]. This is formulated in terms of a concentration of dif- first moment for all values of the time as well as the asymp-
fusing point particles Wthh move in the presence Of a singléotic behavior of the second moment and variance of this
stationary spherical trapping particle. In the picture sugrandom variable is given if8].

gested by Smoluchowski the chemical reaction is calculated A Second related mathematical model that includes many-
in terms of the rate of encounter of initially uniformly dis- body effects is .the so—palled trapp'ln_g model for a random
walk on a lattice which was originally formulated by

tributed Brownian point particles moving in the presence of ¥ 4 ;
: : : : voretsky and Erde[9]. A large body of literature on this
single trapping particle. In the present paper we Cons’Ideral'groblem is summarized if10]. In this class of models a

related problem using a slightly different but essentially . . . i
identical formulation in which spherical particles of radlus rand_om vyalker 'S placed at an arbitrary site on a translation-
. o : ally invariant lattice and one generally attempts to calculate
move by Brownlan motion in the presence of a single $@the survival probability of the random walker in the presence
tionary point abs_orbgr. i . .....of randomly distributed traps. To calculate this probability it
Many generalizations of the considerably oversimplifiedis hocessary to determine statistical properties of the number
Smolgchowskl mode] have appeared in the literature pf bptlg)f distinct sites visited by the random walker in steps,
chemistry and physics. One class of these generalizationgnce survival, in this model, requires that each of the sites
attempts to incorporate many-body effects by allowing for ayisited during the course of the walk must not have been a
concentration of trapping particles rather than the single trapirap. The difficulties inherent in mathematical analyses re-
ping particle envisioned by Smoluchowski. In the original quired for the analysis of the volume of the Wiener sausage
Smoluchowski picture reaction was identified with the ab-and for the solution of the trapping problem are essentially
sorption by a sphere of a diffusing point particles. The con-identical.
sideration of this problem leads, quite naturally, to the study A recent generalization of the trapping problem calculates
of time-dependent properties of the Wiener sausage which ihe expected number of distinct sites visited Myindepen-
just the volume swept out by a particle with a fixed point, saydent n-step random walks, all initially at the same site
the center of the particle, which executes Brownian motion[11,12 (Sy(n)). A continuous version of this problem was
and in doing so follows a random trajectdfy; . Some math- analyzed in[13]. The results of that analysis showed a sur-
ematical properties of the Wiener sausage in two dimensiongrisingly rich behavior when considered as functions of both
were derived as early as 1933 by Leontovich and KolmogN andn. It was shown that the behavior ¢8y(n)) could be
orov[3]. A relation between the kinetics of diffusion-limited characterized as being either collective, in which case there
reactions and properties of the Wiener sausage is discussedda considerable overlap of trajectories, or disjoint, in which
in some detail in Refd4] and[5]. the overlap effects are negligible. A phenomenon of this sort
A calculation of the complete distribution of the volume is to be expected in three or more dimensions where random
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walks are transient rather than recurrgld]. An application  come within a distance of the pointr at least once during
of some of these ideas as a model for the kinetics ofhat time. An equivalent way of phrasing this is to say that it
diffusion-limited reactions is presented [ib5]. Some of the is the probability that a point Brownian particle is trapped by
results in[11] have recently been applied to develop modelstime t by a spherical absorber of radiliscentered at the
of animal foraging 16]. pointr.

In the present paper we consider the problem analogous to To calculate this trapping probability one needs to solve
that studied irf11] for a set of Brownian patrticles injected at the diffusion equation with a single sink term, leading to the

the same site at random timés, t;+t,, t;+t,+t5,... .  formal expression
Thus no limit is imposed on the number of particles at any
given time. It will prove convenient to introduce the notation q(r[ty=H(b—r)+f(r[)H(r —b), (6)

m in which H(z) is the Heaviside step function and in which
AmZZ ti, (1) the functionf(r|t) takes into account particles that remain
=1 untrapped by time by the spherical trap at An expression
so that the time at which particieis born isA;. We will for the functionf(r|t) has been derived if8] where it is

determine properties of the average volume of a Wiener sa2oWn that ind dimensions, withv=(d/2)—1
sage in any number of dimensions. For simplicity, the prob- 2 (p\ ¥ (=
ability density for each of the is taken to be the negative £ S e _ g~ DUP?Z

. (rlt) (1-e )
exponential T\l Jo

P(t)=xre M, 2
with  the  corresponding  cumulative  probability
Y (t)=[7y(r)dr=e M. Since, from the point of view of

mathematical formalism, the problem of calculating statisti- . e .
) o . SRS whereD is the diffusion coefficient, and,(z) andY (z) are
cal properties of the number of distinct sites visited is nearly, . ! .
Bessel functions of the first and second kinds of order

|d¢nt|cal to that of ca!culatlng those for the vplume of theThese functions can be reduced to simpler formg=l and
Wiener sausage we will use language appropriate to the lattey 3 dimensions-

case, understanding that the results apply to both problems.

Jv(z)Y,,(% z) —Jv(% z)Y,,(z)
P(2)+Yi(2)

dz
z

(D

The motivation behind our analysis is that of delineating the b b b
regimes in which the behavior can be characterized as either = & = _ r
J > 1N > f1(x|t) =erf . fa(rt) erf . (8
being disjoint or collective. 2./Dt r 2Dt
Il. GENERAL FORMALISM On substituting Eq(7) into Eq.(5) and concurrently mak-

ing use of Eqg.(6) we can write an explicit expression for
The Brownian particle will be modeled as a sphere with(v(v\/t)) for a single particle as

radiusb. The volume of the Wiener sausage can be written
formally in terms of a single-particle indicator function de-

fined with reference to the Wiener trajectory generated by (v(Wt)>=vb[ 1+d
the center of the spheM,. The indicator function will be

denoted byl (r|W,) defined as

Dt
(d=2) 7 H(d~-2)

4 (»1-e (P gz
t= | oo s|, @
1 if [r—ry|<b 2 fo P(2)+Y(z) 2 ©
H(r|Wy) = herwi )
0 otherwise, wherev,, is the volume of ad-dimensional sphere. In one

él_nd three dimensions this formula produces the relatively

in which case the volume of the Wiener sausage correspond-
simple results

ing to the trajectoryw, can be represented as the integral

4
v(Wt):f I(r|Wy)dr. (4) 2b+T JDt, d=1
a
<U(Wt)>:
The average volume of the Wiener sausage is then gener- am 3. 8p2\ /7 DI+ _
ated by averaging (W,) with respect to all Wiener trajecto- 3 b+8b"ymDt+4mbDt,  d=3.
ries. If we denote this average by a set of brackets, then (10

the average of the volume can be written as an integral ) .
The calculation of the average volume for multiple par-

ticles can be generalized by introducing a hierarchy of indi-
<U(Wt)>:f <'(r|Wt)>dr:j q(r[t)dr. (®  cator functions[12]. These, in turn, generalize the single
indicator function in Eq.(3) but can nevertheless be ex-
The functionq(r|t) is the probability that the Wiener sausage pressed in terms of such functions. As an example of the
has been in contact with the trapping pairfor a total time  simplest such generalization we define a function
of t. It is also the fraction of Wiener trajectories that havel ,[r|W;(1),W,(2)] which is equal to 1 ifr is intersected by
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or covered by one or both of the Wiener sausagkil) or n
W,(2) by timet. In the present context we can, for example, Yt Y(ty). ..ty W t—E ti) dt,dt,...dt,
write =1
=\"e Mdt,dt,...dt,. (16)

L1 |Wi(1),We(2)]=1—{1=I[r|Wy(1)]}

X{1—=1[r[Wy(2)]}, (1) The specification of this probability allows us to express the

. : : . . function C,(r|t) that appears in Eq15) as
since the two Wiener trajectories are assumed to be indepen- n(r10) PP q19

dent of one another. The volume of the union of two Wiener

; t t—A t—A,_
sausages can be expressed as the integral Cn(f|t)=?\”ef”j dtlf 1dt2...f 1
0 0 0
v[Wt(l),Wt(Z)]=f La[r[Wi(1),Wi(2)]dr. (12 Xg(rlt—A)g(r[t—A,)..g(r[t—A,)dt,.
. a7
Thus the average volume is
But this has the form of an-fold convolution integral which
<U[Wt(1),Wt(2)]>=vb+f b{l—[l—f(r|t)]2}dr can be evaluated by induction, leading to the result
r=

=oot frzb“‘gz“'”]d“ (13 Calr[t) = ﬁ—, e“[ Jo‘gm,)d,] , (18)

where f(r|t) is the function defined implicitly in Eq(6)
r=(r-r)*? and we have introduced the notatigiir|t)=1 SO that
—f(r[t) for the probability that the point hasnot been in
contact with a single Wiener sausage by titndhe gener-
alization of the preceding definition of the function V(t)=vb(l—e_“)+J’ [1—(exr{ — At
L[rW,(1),W,(2)] to allow for k trajectories, r=b
L [r|Wi(1),W,(2),... W,(k)] follows along the same lines. t
In the context of our problem there will be a random +>\J g(rIT)dT)} dr
numbern of Brownian particles at any given time. Hence in 0
the calculation of the average volume we must take an aver- —pp(l—e ™\
age ofl[r|Wy—4 (1),W;-4,(2),... Wi, ] with respect to

t
n. . . +f 1—1{ex —)\j f(r|r)dr|} |dr
In general the average Wiener volume can be written as r>b 0
V(t)=ub(1—e—“)+f [1—(g(r|t—A,) =vb(1—e*“)+fr>b{1—exr{—>\F(r|t)]}dr
r=b
Xg(rlt=4z)...)(a,1dr, (14) =vp(l—e M) +3(1), (19)

in which we have denoted the average volumeMgy), v, wherer =(r-r)"2 In writing Eq. (19) we have used the no-
represents the volume of each of the particles, and the brackation

ets on the right-hand side indicate an average over the set of

all birth times and numbers of particles born befor&ince . 1

the number of Brownian particles at any time is a random F(r|t)=f f(r|7-)d7-:tf f(r[te)do=t7(r|t). (20)
variable it is necessary to decompose Bdl) into a sum of 0 0

contributions from cases in which there are 1,2,3,... particles

in the system at timé. We therefore rewrite Eq14) in the

form Since f(r|t) is a probability, the functiorF(r|t) increases

monotonically to infinity witht. We have therefore decom-
posedF(r|t) as indicated, where the function(r|t)<1. The
dr, (15) function J(t) in the last line of Eq(19) represents the inte-
' gral appearing in that equation.

The form of Egs(19) and(20) indicates that the calcula-
in which a formal definition ofC,(r|t) will be given in Eq.  tion of V(t) requires only the solution of a diffusion problem
(17) below. for a single particle and a single trap since this is all that is

The joint probability that the number of particles at time needed for the calculation @fr|t). The solution to that prob-
is exactly equal tan and that the interbirth times lie in the lem is known for Brownian motion in a space of arbitrary
time intervals ¢;,t;+dt;), (t5,t,+dt,),..., (t,,.t,+dt,) is  number of dimensions and is given in E§). Equation(20)
equal to then indicates that id dimensions

V(t)=vb(1—e*“)+f [1—20 Cy(rlt)

r=b
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2 [b\? (= 1 , in time t— 7. Hence the last term on the right-hand side of
F(r|t)y= p F) j 1- 2 (1-e %) Eq. (27) gives the total volume visited at short times. We
0 will see that in high dimensions E7) will essentially be

r r correct at all times since in such spaces the degree of overlap
J, (DY, | =2z]-3J,|=2|Y,(2) is negligible.
b b dz . : .
% 5 5 —, (21 In the following sections we illustrate the use of the for-
J(2D)+Y(2) z malism developed in this chapter by deriving explicit results

for V(t) in one and three dimensions and examining the

in which ¢ is a dimensionless time defined &s Dt/b? and, long-time behavior of this function

as before,y=(d/2)—1. In contrast to the just completed
analysis for the calculation 6f(t), a calculation of thekth

moment of the volume, which will not be discussed in the B. Asymptotics ind=1

present paper, requires the solution df-&rap problem(8]. Ind=1 v,=2b and

Whend is odd the form of the integrand in E¢R1) can be

simplified because the Bessel functions are then expressible _ J“ _ _

in terms of more elementary functions. ) 2Dt b [1~exp(=Ath(y)]dy, (28)

The one- and three-dimensional results can all be ex-
pressed in terms of a single function which we will denote bywhereh(s) is given in Eq.(23). The functional form of the
h(s). In one dimension the integral defining(x|t) can be behavior ofJ(t) in the long-time regime defined byt>1
evaluated exactly, yielding can be found by a simple argument. At such times the inte-
grand of Eq(28), considered as a function gf is essentially
1 2 equal to 1 up to the value of at which the exponent be-
F(xX[t)=h — | —=1] |, (22 comesO(1). Denote the approximate value at which this
46\ b occurs byy, (t). The integrand in Eq(28) goes to 0 over a
range ofy that is much smaller thap, (t). These consider-

where ations suggest that, to a good approximation,
_ 2
h(s)=(1+2s%)erfq(s) - 2?_ 23 V(t)~vp+2\Dty,(1). (29
a

An estimate ofy, (t) can be found by observing that when
is a function that satisfiels(0)=1 and decreases monotoni- At is largeh[y, (t)] must be small in order that the exponent
cally to zero ass—oo. After performing the integration in beO(1). This is equivalent to the requirement thgt(t)>1

three dimensions one finds which allows us to use the approximation
2 —y2
b 1 (r e
Zirlt) = — i h(y)~ ——. (30)
F(r|t) - h ac (b 1) 1 (249 2\my3
in terms Of the Samb(s)_ It therefore fO||0WS that
A. The short-time regime in all dimensions Y (D)~ VIn(AL). (31)
When the produckt.7(r|t) is smallV(t) can be approxi- Hence at long times
mated as
J(t)~vp+2yDt In(\t). (32

t
V(t)~vy(1-e “)+)\fr>bdrfof(r|r)dr. (29 sincent is the average number of particles injected in time
this functional form is identical to that for the case in which
However, the function N random walkers are injected simultaneoudly,12,. It is,
t t in principal possible to find the complete probability density
_ function for the volume in one dimension. A full analysis of
f,zbdrfof(rlT)dT_ fodrﬁzbf(rh)dr (26) this is rather complicated, but it can be shown that in the
limit of long times this density will tend towards & func-
is equal to{v(W;_,)) —v} so that in the short-time regime tion.

The dependence shown in E®2) defines what will be
termed “collective behavior,” since a particle will spend
most of its time visiting the region already visited by other
particles. The term “individual behavior” will refer to a re-
which corresponds to a situation in which the Wiener saugime in whichV/(t) is approximately equal to a sum of con-
sages of different particles overlap each other only in dributions from single particles. We see that in one dimen-
sphere of radiud around the origin. Note thatdr is the  sion the individual behavior that occurs at short enough
average number of particles produced in a timeand times changes to overlapping behavior at longer times. This
(v(W,_,)) is the average volume visited by a single particleis clearly a consequence of the restricted geometry in one

t
V(t)“vb(l—ef“)+>\fo[<v(Wt—7)>—vb]dﬂ (27)
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dimension which causes the Wiener sausage to be of one 2 o[ 1 ) J,(pz) dz
shape only. One might expect on intuitive grounds that indi- -7 (r|t)~— f 2 (1—e )~ -,
. ) A . wp” Jo | €z Y, (2) z
vidual behavior occurs at all values of the time in sufficiently
high dimensions. In the remainder of the paper we examine
how the occurrence of individual and overlapping behavior p—. (36
depends on the dimension. We further restrict our attention =3 which are the only
candidates for the possibility of individual behavior over the
. ASYMPTOTIC RESULTS whole time regime because of the transience of Brownian
FOR DIMENSIONS GREATER THAN ONE motion. Remembering that the principal contribution to the
value of 7(r|t) comes from smalz we use the approxima-
A. General theory tion
In this section we consider the conditions for individual ,
and overlapping behavior id>1 dimensions, showing that Y, (2)~— I'(v) (E) »>0 (37)
whend=5 only individual behavior will be observed. When Y T \z]' '
d=<4 both individual and overlapping behavior can occur; in o
d=4 dimensions the possibility of finding both types of be-Which further simplifies Eq(36) to
havior will be shown to depend on the rate at which particles .
are produced. The argument will be seen to hinge on the .,~f/7(r|t)~,—j [1__12
qualitative behavior of the integral definid{t) given in Eq. 2" T (w)p” Jo &z
(19.
In d dimensions the long-time behavior df(t) can be x(l—e‘gzz) 21 (pz)dz. (38)
expressed as
V(t)=dv,Ky(t), (33 As shown in the Appendix, the integral can be transformed

in which Ky4(t) is the integral

into a somewhat simpler form, allowing us to write
2 2\ v—2
X+ —

a7 { ~ 1 p ” —X
) .~/(r|t)~Wexr{—4—g jo Xe Y dx,
Kq(t) = fo [1-exp{— M Za(pl}]p" tdp,  (34) (39

which will be the basis of the analysis to follow.
where the isotropy has allowed us to introduce spherical co- !N @nalyzing the implications of E¢39) we consider two

ordinates ang=r/b. An exact expression for the function limits p°> or <¢which is equivalent to®> or <Dt. In the
Z4(plt) can be found as an integral as in Eg1). To find  first of these cases the term in parentheses in the integrand of

the long-time limit of this integral we will adopt the same Eq’.ﬁ(39) is dominated byp’l(4¢) so that the equation
strategy as in the treatment @& 1 by defining the function M7 (pl§)=1 s
p, (1) as the solution ta\t.74[p, (t)[t]=1. The value of

. At p?
Kq4(t) can then be approximated by - ex;< - _) =1 40
F@e 2 &% "ag) =t 40
Kd(t)*a [p, (D]C. (35) which may be solved by iteration. In lowest order we find
At 1/2
t)y~{4&IN| =——— . 41
This, however, corresponds to overlapping behavior because P+ (1) { ¢ L(v)(48)" ] 4D

Eq. (35 is the result obtained for an expanding ) ) o )
d-dimensional sphere. Notice, however, that our argument? d=3 dimensionsy=1/2 and it is clear thap; (t)>4¢
implies that Eq.(35) is valid provided that the function in consistent with the assumptions required for the analysis.
square brackets in the integrand in E84) makes a sharp Whend=5 the parametew is greater than 1 so that the
transition from 1 to O for some value pf We will show that ~approximate solution of the form shown in E@1) no

in a sufficiently high number of dimensions such behavioronger conforms to the basic assumption. Tlus4 can be
cannot occur and in consequence only disjoint behavior i§egarded as the critical dimension which agrees with proper-
possible. ties of the intersections of random walk trajector{@4].

To examine this question it is necessary to determine th¥Vhend=4 the quantityp? (t)/4¢ is approximately propor-
behavior of Eq.(21) as a function ofp and consider the tional to In[\b%D], leading to the conclusion that
behavior of Eqg.(21) in the limit p—cw. In that limit the pi (t)/4¢ cannot be large unless the dimensionless produc-
principal contribution to the integral will come from<1  tion rate of particles is large.
since where is large the oscillatory behavior of the Bessel Consistency of the argument leading to E4jl) also de-
functions sends the integrand to zero at a rate greater thgyends on the transition in the integrand of E8¢) being a
1/z. But whenz is small Y2(z)>J2(z) which allows the sharp one. We therefore examine the slope of the integrand
dropping of terms and a consequent simplification of Eq.of that equation ap=p, (t) by determining the characteris-
(35 to tic length inp over which the transition in Eq34) is made
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and requiring that it be much less than(t). Let pyandt) C.d=4
dgnote the transition length. To a good approximation this is |, the context of the present problem we have pointed out
given by that there is a kind of phase transitiondrs 4 dimensions as
also occurs in the behavior of random walk trajectories. A
d.7 1 4¢ manifestation of this change is the fact tharops out of the
Prandt)~| —At do =~ o, (D (42 logarithm in Eq.(41). In this case, in the regime of overlap-
P=py (V) * ping behavior we have
. - . 2\ 72
We see thfat the requirement that,<<p. (t) coincides with Vogi(t) | Dt In(&” (45)
the condition for the validity of Eq(41). Hence the only 8D
condition required for the consistency of the analysis just o
given is thatpi(t)>4§. and when the behavior is disjoint
Ving(t) <b2D 12, (46)

B.d=3
. . , - . Hence collective behavior dominates when the condition
In three dimensions one finds explicitly that at long times

32 At 3 )\b2> |n()\_b2 ’ (47)
V(t)~ —— | Dt In| — D D
3 J47Dt/b? 1
312 is fulfilled. Again, in agreement with intuition, collective be-
327 | Dt [ N?%b% havior occurs from the beginning of the process when the
=3 |2 " 7m0 (43 injection rates are large. If the condition in E¢7) does not

hold then only disjoint behavior will be observed over the
. . , , ) entire time span.

This relation forV(t) describes overlapping behavior when | =5, or equivalentlyv=3/2, we can no longer use the
the domain visited by the particles can roughly be describedpproximate solution in Eq41) since Eq.(40) requires that

as a sphere of radiygiDt In[\t/\/47Dt/b?]} Y2 p°>4£ When p?<4¢ we can drop the exponential term in
The early time behavior o¥/(t) can be found from Eq. Eq.(39) as well as the factop?(4é€). The resulting equation
(27) and is explicitly is readily solved, leading to the estimate
—~ 1/(2v)
V(t)~vp(1—e M)+ Lb2\ (7Dt3) Y2+ 2rb DAL, Py (=N, (48)
(44)

However, it is also easy to verify that the transition layer of
the integrand in Eq(34) is also of the order op, (t) which
This implies that the approximate crossover time at whichimplies, in turn, that overlapping behavior attributable to the
individual behavior is replaced by overlapping behavior isoccurrence of such a transition layer cannot occur in dimen-
D/(\b)2. If A\b?/D>1 (i.e., the average number of particles sjons greater than five.
injected during the tim®2/D is greater than onehen there
are a great number of particles in the system at early times
and overlapping behavior will be observed, more or less,
over the entire range in time. When this condition is not We have considered qualitative characteristics of the
satisfied one can expect both individual and overlapping betime-dependent behavior of the volume of the union of
havior. In this case the numbBY/(b?\) of injected particles Wiener sausages associated with Brownian particles injected
before the crossover time is much greater than 1. This is it random times into a translationally invariant medium at a
contrast with our results fod=1 in which the regime in single site. This is similar to the problem treated in REf4]
which individual behavior occurs is associated with the con-and[12], in which all of the particles appear in the system at
dition Nt<<1, i.e., the average number of injected particles isthe same time, but differs from it in that at any given time
less than 1. Such behavior is obvious on the consideratiothere can be an arbitrary number of particles performing
that the geometry is restricted in one dimension. Brownian motion. As in the mathematical development of
As in one dimension, the analytic form of E@3) is the  those references, the resulting system exhibits a complex be-
same as is found wheN particles are injected initially, no havior when considered as a function of time. The results in
further ones being adddd 1,12 provided thatN is replaced both analyses can be described in terms of a progression
by A t. However, in the random walk problem treated in Refs.from individual to overlapping behavior or vice versa. How-
[11] and[12] the overlapping behavior is manifested at theever, the critical dimension which defines a boundary be-
earliest times, after which the behavior becomes disjoint. Iiween these two types of behavior differs in the two model
contrast, in the present model in which particles are injectedlypes. In Refs[11] and[12] individual behavior first oc-
at different times the early time behavior is disjoint and acurred at long times il=3 dimensions while in the present
transition is made to overlapping behavior at largefhis is  cased=4 is a critical dimension, and fa=5 only indi-
to be expected on the grounds that at early times there wiWidual behavior is shown to occur over the entire range in
be few particles in the system, while implicit in the work time. We expect that the same qualitative behavior will occur
reported on in Refd.11] and[12] was the assumptioN>1.  when the injection sites are different, but localized in an

IV. CONCLUDING REMARKS
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time scales that are defined by the injection fBte\ ~* and lonal Institutes of Health.
the radius of the sphere defining the Wiener sausage
T,=Db?D. In one and two dimensions only the first of these APPENDIX

time scales plays any role because in low dimensions Brown- petajls of the transformation of E¢38) to (39). We

ian motion is recurrent. Our detailed analysis shows that iRransform the integral in Eq38) by making use of the inte-
one dimension disjoint behavior occurs whenT; and over- g [20],

lap effects manifest themselves whenT; . This occurs also
whend=2 because of transience although we have not pre- s 1
sented a detailed analysis of that case. jo 2" J,(2)dz=2"""T(») (A1)
The second time scale becomes important in determining
the crossover time between the two qualitative behaviogg puyt it into the form
types in three dimensions. In three dimensions whgn T;
or equivalently when particles are injected very quickly, the 1 1
system will exhibit overlapping behavior for all times except T(r|t)=~ p? [1_ E
for a brief initial period during which the behavior is disjoint.
WhenT;>T, the behavior is disjoint initially, while overlap- where 8= ¢/p?=r?/(Dt).
ping behavior occurs after a crossover tiffig=D/(b\)?,
which is large compared td;. In consequence the number 1 * N N
of particles injected byr,, D/(b?\) is much greater than 1 Q(B)= 271 () Jo (1-e7#)z2""%) (2)dz. (A3)
and the average volume visitedrB3[D/(b?\)]3 is much
greater tharv,,. Thus in three dimensions overlapping be- This integral is evaluated by first taking the second deriva-
havior always occurs at sufficiently long times. When thetive with respect tgs, thereby transforming it into an integral
particle source is weak, disjoint behavior will be observedwhose value is given if20]. The second derivative @(3)
for a substantial amount of time. is
Individual behavior becomes even more pronounced in
four dimensions. WhefT;>T, individual behavior can be v 1 Y e
expected to occur over the entire time span. In the contrary Q"(B)=— 27T () fo 2" J,(2)e " dz
case of an intensive injection rafg>T; the regime of over-
lapping behavior occurs over the entire range in time. B 4 _14p
Our analysis incorporates the use of a specific form for - W e : (A4)
the probability density of the times between successive in-
jections, i.e..(t)=\e " which leads to the general rela- The value ofQ() will be found by integrating this relation
tion given in Eq.(19). We conjecture, but have so far been twice noting thatQ(0)=0 and Q'(0)=1 which follows
unable to prove that at sufficiently long times, E§i9) re-  from Eq.(A3). In this way we find thaQ() is
mains valid wheneveg(t) has a finite momenft) with the

Q(ﬁ)}, (A2)

rate \ replaced b)(t}‘l. The situation in the case in which B o o

the interinjection times are infinite may also be of some theo- Q(B)=B~ T(v) 1/(43)9 X" Sdx

retical interest. Other extensions of this work that suggest

themselves are to diffusion on fractals and to a calculation of 1 * xup—2

the second moment of the volume as would be useful for * 4T (v) fl,(w)e X" (AS)

more direct applications to the trapping probléh7,18. A
further extension of interest is one in which an external fieldWhen this is substituted into EqA2) and some simple
is applied which bias the particle moti¢m9]. transformations are made, one finds E2p) as asserted.
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