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In order to extend the greatly simplified Smoluchowski model for chemical reaction rates it is necessary to
incorporate many-body effects. A generalization with this feature is the so-called trapping model in which
random walkers move among a uniformly distributed set of traps. The solution of this model requires consid-
eration of the distinct number of sites visited by a singlen-step random walk. A recent analysis@H. Larralde
et al., Phys. Rev. A45, 1728~1992!# has considered a generalized version of this problem by calculating the
average number of distinct sites visited byN n-step random walks. A related continuum analysis is given in
@A. M. Berezhkovskii, J. Stat. Phys.76, 1089~1994!#. We consider a slightly different version of the general
problem by calculating the average volume of the Wiener sausage generated by Brownian particles generated
randomly in time. The analysis shows that two types of behavior are possible: one in which there is strong
overlap between the Wiener sausages of the particles, and the second in which the particles are mainly
independent of one another. Either one or both of these regimes occur, depending on the dimension.@S1063-
651X~96!04706-X#

PACS number~s!: 05.40.1j, 82.20.Db

I. INTRODUCTION

Perhaps the earliest microscopic model for the kinetics in
diffusion-limited reactions is that due to Smoluchowski
@1,2#. This is formulated in terms of a concentration of dif-
fusing point particles which move in the presence of a single
stationary spherical trapping particle. In the picture sug-
gested by Smoluchowski the chemical reaction is calculated
in terms of the rate of encounter of initially uniformly dis-
tributed Brownian point particles moving in the presence of a
single trapping particle. In the present paper we consider a
related problem using a slightly different but essentially
identical formulation in which spherical particles of radiusb
move by Brownian motion in the presence of a single sta-
tionary point absorber.

Many generalizations of the considerably oversimplified
Smoluchowski model have appeared in the literature of both
chemistry and physics. One class of these generalizations
attempts to incorporate many-body effects by allowing for a
concentration of trapping particles rather than the single trap-
ping particle envisioned by Smoluchowski. In the original
Smoluchowski picture reaction was identified with the ab-
sorption by a sphere of a diffusing point particles. The con-
sideration of this problem leads, quite naturally, to the study
of time-dependent properties of the Wiener sausage which is
just the volume swept out by a particle with a fixed point, say
the center of the particle, which executes Brownian motion,
and in doing so follows a random trajectoryWt . Some math-
ematical properties of the Wiener sausage in two dimensions
were derived as early as 1933 by Leontovich and Kolmog-
orov @3#. A relation between the kinetics of diffusion-limited
reactions and properties of the Wiener sausage is discussed
in some detail in Refs.@4# and @5#.

A calculation of the complete distribution of the volume

of a Wiener sausage poses rather formidable mathematical
problems except in one dimension where all calculations can
be carried out exactly because the volume can be identified
as the span of a diffusion process@6,7#. Calculations of the
first moment for all values of the time as well as the asymp-
totic behavior of the second moment and variance of this
random variable is given in@8#.

A second related mathematical model that includes many-
body effects is the so-called trapping model for a random
walk on a lattice which was originally formulated by
Dvoretsky and Erdo¨s @9#. A large body of literature on this
problem is summarized in@10#. In this class of models a
random walker is placed at an arbitrary site on a translation-
ally invariant lattice and one generally attempts to calculate
the survival probability of the random walker in the presence
of randomly distributed traps. To calculate this probability it
is necessary to determine statistical properties of the number
of distinct sites visited by the random walker inn steps,
since survival, in this model, requires that each of the sites
visited during the course of the walk must not have been a
trap. The difficulties inherent in mathematical analyses re-
quired for the analysis of the volume of the Wiener sausage
and for the solution of the trapping problem are essentially
identical.

A recent generalization of the trapping problem calculates
the expected number of distinct sites visited byN indepen-
dent n-step random walks, all initially at the same site
@11,12# ^SN(n)&. A continuous version of this problem was
analyzed in@13#. The results of that analysis showed a sur-
prisingly rich behavior when considered as functions of both
N andn. It was shown that the behavior of^SN(n)& could be
characterized as being either collective, in which case there
is a considerable overlap of trajectories, or disjoint, in which
the overlap effects are negligible. A phenomenon of this sort
is to be expected in three or more dimensions where random
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walks are transient rather than recurrent@14#. An application
of some of these ideas as a model for the kinetics of
diffusion-limited reactions is presented in@15#. Some of the
results in@11# have recently been applied to develop models
of animal foraging@16#.

In the present paper we consider the problem analogous to
that studied in@11# for a set of Brownian particles injected at
the same site at random timest1 , t11t2 , t11t21t3 ,... .
Thus no limit is imposed on the number of particles at any
given time. It will prove convenient to introduce the notation

Dm5(
j51

m

ti , ~1!

so that the time at which particlei is born isD i . We will
determine properties of the average volume of a Wiener sau-
sage in any number of dimensions. For simplicity, the prob-
ability density for each of thet i is taken to be the negative
exponential

c~ t !5le2lt, ~2!

with the corresponding cumulative probability
C(t)5* t

`c(t)dt5e2lt. Since, from the point of view of
mathematical formalism, the problem of calculating statisti-
cal properties of the number of distinct sites visited is nearly
identical to that of calculating those for the volume of the
Wiener sausage we will use language appropriate to the latter
case, understanding that the results apply to both problems.
The motivation behind our analysis is that of delineating the
regimes in which the behavior can be characterized as either
being disjoint or collective.

II. GENERAL FORMALISM

The Brownian particle will be modeled as a sphere with
radiusb. The volume of the Wiener sausage can be written
formally in terms of a single-particle indicator function de-
fined with reference to the Wiener trajectory generated by
the center of the sphereWt . The indicator function will be
denoted byI ~r uWt! defined as

I ~r uWt!5H 1 if ur2rWt
u<b

0 otherwise,
~3!

in which case the volume of the Wiener sausage correspond-
ing to the trajectoryWt can be represented as the integral

v~Wt!5E I ~r uWt!dr . ~4!

The average volume of the Wiener sausage is then gener-
ated by averagingv(Wt) with respect to all Wiener trajecto-
ries. If we denote this average by a set of brackets,^•••&, then
the average of the volume can be written as an integral

^v~Wt!&5E ^I ~r uWt!&dr5E q~r ut !dr . ~5!

The functionq~r ut! is the probability that the Wiener sausage
has been in contact with the trapping pointr for a total time
of t. It is also the fraction of Wiener trajectories that have

come within a distanceb of the pointr at least once during
that time. An equivalent way of phrasing this is to say that it
is the probability that a point Brownian particle is trapped by
time t by a spherical absorber of radiusb centered at the
point r .

To calculate this trapping probability one needs to solve
the diffusion equation with a single sink term, leading to the
formal expression

q~r ut !5H~b2r !1 f ~r ut !H~r2b!, ~6!

in which H(z) is the Heaviside step function and in which
the function f ~r ut! takes into account particles that remain
untrapped by timet by the spherical trap atr . An expression
for the function f ~r ut! has been derived in@8# where it is
shown that ind dimensions, withn5(d/2)21

f ~r ut !5
2

p S br D
nE

0

`

~12e2Dt/b2z2!

3

Jn~z!YnS rb zD2JnS rb zDYn~z!

Jn
2~z!1Yn

2~z!

dz

z
, ~7!

whereD is the diffusion coefficient, andJn(z) andYn(z) are
Bessel functions of the first and second kinds of ordern.
These functions can be reduced to simpler forms ind51 and
d53 dimensions:

f 1~xut !5erfcS uxu2b

2ADt D , f 3~r ut !5
b

r
erfcS r2b

2ADt D . ~8!

On substituting Eq.~7! into Eq.~5! and concurrently mak-
ing use of Eq.~6! we can write an explicit expression for
^v(Wt)& for a single particle as

^v~Wt!&5vbH 11dF ~d22!
Dt

b2
H~d22!

1
4

p2 E
0

` 12e2~Dt/b2!z2

Jn
2~z!1Yn

2~z!

dz

z3 G J , ~9!

wherevb is the volume of ad-dimensional sphere. In one
and three dimensions this formula produces the relatively
simple results

^v~Wt!&55 2b1
4

Ap
ADt, d51

4p

3
b318b2ApDt14pbDt, d53.

~10!

The calculation of the average volume for multiple par-
ticles can be generalized by introducing a hierarchy of indi-
cator functions@12#. These, in turn, generalize the single
indicator function in Eq.~3! but can nevertheless be ex-
pressed in terms of such functions. As an example of the
simplest such generalization we define a function
I 2@r uWt(1),Wt(2)# which is equal to 1 ifr is intersected by
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or covered by one or both of the Wiener sausagesWt(1) or
Wt(2) by timet. In the present context we can, for example,
write

I 2@r uWt~1!,Wt~2!#512$12I @r uWt~1!#%

3$12I @r uWt~2!#%, ~11!

since the two Wiener trajectories are assumed to be indepen-
dent of one another. The volume of the union of two Wiener
sausages can be expressed as the integral

v@Wt~1!,Wt~2!#5E I 2@r uWt~1!,Wt~2!#dr . ~12!

Thus the average volume is

^v@Wt~1!,Wt~2!#&5vb1E
r>b

$12@12 f ~r ut !#2%dr

[vb1E
r>b

@12g2~r ut !#dr , ~13!

where f ~r ut! is the function defined implicitly in Eq.~6!
r5~r•r !1/2 and we have introduced the notationg~r ut)51
2 f ~r ut! for the probability that the pointr hasnot been in
contact with a single Wiener sausage by timet. The gener-
alization of the preceding definition of the function
I 2@r uWt(1),Wt(2)# to allow for k trajectories,
I k@r uWt(1),Wt(2),...,Wt(k)# follows along the same lines.

In the context of our problem there will be a random
numbern of Brownian particles at any given time. Hence in
the calculation of the average volume we must take an aver-
age ofI n@r uWt2D1

(1),Wt2D2
(2),...,Wt2Dn

# with respect to
n.

In general the average Wiener volume can be written as

V~ t !5vb~12e2lt!1E
r>b

@12^g~r ut2D1!

3g~r ut2D2!...&$D i %
#dr , ~14!

in which we have denoted the average volume byV(t), vb
represents the volume of each of the particles, and the brack-
ets on the right-hand side indicate an average over the set of
all birth times and numbers of particles born beforet. Since
the number of Brownian particles at any time is a random
variable it is necessary to decompose Eq.~14! into a sum of
contributions from cases in which there are 1,2,3,... particles
in the system at timet. We therefore rewrite Eq.~14! in the
form

V~ t !5vb~12e2lt!1E
r>b

F12 (
n50

`

Cn~r ut !Gdr , ~15!

in which a formal definition ofCn~r ut! will be given in Eq.
~17! below.

The joint probability that the number of particles at timet
is exactly equal ton and that the interbirth times lie in the
time intervals (t1 ,t11dt1), (t2 ,t21dt2),..., (tn ,tn1dtn) is
equal to

c~ t1!c~ t2!...c~ tn!CS t2(
i51

n

t i D dt1dt2 ...dtn
5lne2ltdt1dt2 ...dtn . ~16!

The specification of this probability allows us to express the
functionCn~r ut! that appears in Eq.~15! as

Cn~r ut !5lne2ltE
0

t

dt1E
0

t2D1
dt2 ...E

0

t2Dn21

3g~r ut2D1!g~r ut2D2!...g~r ut2Dn!dtn .

~17!

But this has the form of ann-fold convolution integral which
can be evaluated by induction, leading to the result

Cn~r ut !5
ln

n!
e2ltH E

0

t

g~r ut!dtJ n, ~18!

so that

V~ t !5vb~12e2lt!1E
r.b

F12H expS 2lt

1lE
0

t

g~r ut!dt D J Gdr
5vb~12e2lt!

1E
r.b

F12H expS 2lE
0

t

f ~r ut!dt D J Gdr
5vb~12e2lt!1E

r.b
$12exp@2lF~r ut !#%dr

5vb~12e2lt!1J~ t !, ~19!

wherer5~r•r !1/2. In writing Eq. ~19! we have used the no-
tation

F~r ut !5E
0

t

f ~r ut!dt5tE
0

1

f ~r utu!du5tF ~r ut !. ~20!

Since f ~r ut! is a probability, the functionF~r ut! increases
monotonically to infinity witht. We have therefore decom-
posedF~r ut! as indicated, where the functionF ~r ut!<1. The
function J(t) in the last line of Eq.~19! represents the inte-
gral appearing in that equation.

The form of Eqs.~19! and~20! indicates that the calcula-
tion of V(t) requires only the solution of a diffusion problem
for a single particle and a single trap since this is all that is
needed for the calculation off ~r ut!. The solution to that prob-
lem is known for Brownian motion in a space of arbitrary
number of dimensions and is given in Eq.~9!. Equation~20!
then indicates that ind dimensions
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F ~r ut !5
2

p S br D
nE

0

`F12
1

jz2
~12e2jz2!G

3

Jn~z!YnS rb zD2JnS rb zDYn~z!

Jn
2~z!1Yn

2~z!

dz

z
, ~21!

in which j is a dimensionless time defined asj5Dt/b2 and,
as before,n5(d/2)21. In contrast to the just completed
analysis for the calculation ofV(t), a calculation of thekth
moment of the volume, which will not be discussed in the
present paper, requires the solution of ak-trap problem@8#.
Whend is odd the form of the integrand in Eq.~21! can be
simplified because the Bessel functions are then expressible
in terms of more elementary functions.

The one- and three-dimensional results can all be ex-
pressed in terms of a single function which we will denote by
h(s). In one dimension the integral definingF (xut) can be
evaluated exactly, yielding

F ~xut !5hFA 1

4j
S uxu

b
21D 2G , ~22!

where

h~s!5~112s2!erfc~s!2
2se2s2

Ap
~23!

is a function that satisfiesh(0)51 and decreases monotoni-
cally to zero ass→`. After performing the integration in
three dimensions one finds

F ~r ut !5
b

r
hFA 1

4j
S r
b

21D 2G ~24!

in terms of the sameh(s).

A. The short-time regime in all dimensions

When the productltF ~r ut! is smallV(t) can be approxi-
mated as

V~ t !'vb~12e2lt!1lE
r>b

drE
0

t

f ~r ut!dt. ~25!

However, the function

E
r>b

drE
0

t

f ~r ut!dt5E
0

t

dtE
r>b

f ~r ut!dr ~26!

is equal to^v(Wt2t)&2vb so that in the short-time regime

V~ t !'vb~12e2lt!1lE
0

t

@^v~Wt2t!&2vb#dt, ~27!

which corresponds to a situation in which the Wiener sau-
sages of different particles overlap each other only in a
sphere of radiusb around the origin. Note thatldt is the
average number of particles produced in a timet and
^v(Wt2t)& is the average volume visited by a single particle

in time t2t. Hence the last term on the right-hand side of
Eq. ~27! gives the total volume visited at short times. We
will see that in high dimensions Eq.~27! will essentially be
correct at all times since in such spaces the degree of overlap
is negligible.

In the following sections we illustrate the use of the for-
malism developed in this chapter by deriving explicit results
for V(t) in one and three dimensions and examining the
long-time behavior of this function.

B. Asymptotics in d51

In d51 vb52b and

J~ t !52ADtE
b

`

@12exp„2lth~y!…#dy, ~28!

whereh(s) is given in Eq.~23!. The functional form of the
behavior ofJ(t) in the long-time regime defined bylt@1
can be found by a simple argument. At such times the inte-
grand of Eq.~28!, considered as a function ofy, is essentially
equal to 1 up to the value ofy at which the exponent be-
comesO(1). Denote the approximate value at which this
occurs byy

*
(t). The integrand in Eq.~28! goes to 0 over a

range ofy that is much smaller thany
*
(t). These consider-

ations suggest that, to a good approximation,

V~ t !'vb12ADty* ~ t !. ~29!

An estimate ofy
*
(t) can be found by observing that when

lt is largeh[y
*
(t)] must be small in order that the exponent

beO(1). This is equivalent to the requirement thaty
*
(t)@1

which allows us to use the approximation

h~y!'
e2y2

2Apy3
. ~30!

It therefore follows that

y* ~ t !'Aln~lt !. ~31!

Hence at long times

J~ t !'vb12ADt ln~lt !. ~32!

Sincelt is the average number of particles injected in timet
this functional form is identical to that for the case in which
N random walkers are injected simultaneously@11,12#. It is,
in principal possible to find the complete probability density
function for the volume in one dimension. A full analysis of
this is rather complicated, but it can be shown that in the
limit of long times this density will tend towards ad func-
tion.

The dependence shown in Eq.~32! defines what will be
termed ‘‘collective behavior,’’ since a particle will spend
most of its time visiting the region already visited by other
particles. The term ‘‘individual behavior’’ will refer to a re-
gime in whichV(t) is approximately equal to a sum of con-
tributions from single particles. We see that in one dimen-
sion the individual behavior that occurs at short enough
times changes to overlapping behavior at longer times. This
is clearly a consequence of the restricted geometry in one

54 95AVERAGE VOLUME OF THE DOMAIN VISITED BY RANDOMLY . . .



dimension which causes the Wiener sausage to be of one
shape only. One might expect on intuitive grounds that indi-
vidual behavior occurs at all values of the time in sufficiently
high dimensions. In the remainder of the paper we examine
how the occurrence of individual and overlapping behavior
depends on the dimension.

III. ASYMPTOTIC RESULTS
FOR DIMENSIONS GREATER THAN ONE

A. General theory

In this section we consider the conditions for individual
and overlapping behavior ind.1 dimensions, showing that
whend>5 only individual behavior will be observed. When
d<4 both individual and overlapping behavior can occur; in
d54 dimensions the possibility of finding both types of be-
havior will be shown to depend on the rate at which particles
are produced. The argument will be seen to hinge on the
qualitative behavior of the integral definingV(t) given in Eq.
~19!.

In d dimensions the long-time behavior ofV(t) can be
expressed as

V~ t !5dvbKd~ t !, ~33!

in which Kd(t) is the integral

Kd~ t !5E
0

`

@12exp$2ltF d~rut !%#rd21dr, ~34!

where the isotropy has allowed us to introduce spherical co-
ordinates andr5r /b. An exact expression for the function
F d(rut) can be found as an integral as in Eq.~21!. To find
the long-time limit of this integral we will adopt the same
strategy as in the treatment ofd51 by defining the function
r
*
(t) as the solution toltF d[r*

(t)ut]51. The value of
Kd(t) can then be approximated by

Kd~ t !'
1

d
@r* ~ t !#d. ~35!

This, however, corresponds to overlapping behavior because
Eq. ~35! is the result obtained for an expanding
d-dimensional sphere. Notice, however, that our argument
implies that Eq.~35! is valid provided that the function in
square brackets in the integrand in Eq.~34! makes a sharp
transition from 1 to 0 for some value ofr. We will show that
in a sufficiently high number of dimensions such behavior
cannot occur and in consequence only disjoint behavior is
possible.

To examine this question it is necessary to determine the
behavior of Eq.~21! as a function ofr and consider the
behavior of Eq.~21! in the limit r→`. In that limit the
principal contribution to the integral will come fromz!1
since whenz is large the oscillatory behavior of the Bessel
functions sends the integrand to zero at a rate greater than
1/z. But when z is small Y n

2(z)@J n
2(z) which allows the

dropping of terms and a consequent simplification of Eq.
~35! to

F ~r ut !'
2

prn E
0

`F 1

jz2
~12e2jz2!21G Jn~rz!

Yn~z!

dz

z
,

r→`. ~36!

We further restrict our attention tod>3 which are the only
candidates for the possibility of individual behavior over the
whole time regime because of the transience of Brownian
motion. Remembering that the principal contribution to the
value ofF ~r ut! comes from smallz we use the approxima-
tion

Yn~z!'2
G~n!

p S 2zD
n

, n.0, ~37!

which further simplifies Eq.~36! to

F ~r ut !'
1

2n21G~n!rn E
0

`F12
1

jz2

3~12e2jz2!Gzn21Jn~rz!dz. ~38!

As shown in the Appendix, the integral can be transformed
into a somewhat simpler form, allowing us to write

F ~r ut !'
1

G~n!r2n expS 2
r2

4j D E
0

`

xe2xS x1
r2

4j D n22

dx,

~39!

which will be the basis of the analysis to follow.
In analyzing the implications of Eq.~39! we consider two

limits r2@ or !j which is equivalent tor 2@ or !Dt. In the
first of these cases the term in parentheses in the integrand of
Eq. ~39! is dominated byr2/~4j! so that the equation
ltF ~ruj!51 is

lt

G~n!~4j!n22r4
expS 2

r2

4j D51, ~40!

which may be solved by iteration. In lowest order we find

r* ~ t !'H 4j lnF lt

G~n!~4j!nG J 1/2. ~41!

In d53 dimensionsn51/2 and it is clear thatr
*
2 (t)@4j

consistent with the assumptions required for the analysis.
When d>5 the parametern is greater than 1 so that the
approximate solution of the form shown in Eq.~41! no
longer conforms to the basic assumption. Thusd54 can be
regarded as the critical dimension which agrees with proper-
ties of the intersections of random walk trajectories@21#.
Whend54 the quantityr

*
2 (t)/4j is approximately propor-

tional to ln[lb2/D], leading to the conclusion that
r
*
2 (t)/4j cannot be large unless the dimensionless produc-
tion rate of particles is large.

Consistency of the argument leading to Eq.~41! also de-
pends on the transition in the integrand of Eq.~34! being a
sharp one. We therefore examine the slope of the integrand
of that equation atr5r

*
(t) by determining the characteris-

tic length inr over which the transition in Eq.~34! is made
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and requiring that it be much less thanr
*
(t). Let rtrans(t)

denote the transition length. To a good approximation this is
given by

r trans~ t !'F2lt
dF

dr U
r5r

*
~ t !

G21

'
4j

r* ~ t !
. ~42!

We see that the requirement thatrtrans!r
*
(t) coincides with

the condition for the validity of Eq.~41!. Hence the only
condition required for the consistency of the analysis just
given is thatr

*
2 (t)@4j.

B. d53

In three dimensions one finds explicitly that at long times

V~ t !'
32p

3 FDt lnS lt

A4pDt/b2
D G 3/2

5
32p

3 FDt2 lnS l2b2t

4pD D G 3/2. ~43!

This relation forV(t) describes overlapping behavior when
the domain visited by the particles can roughly be described
as a sphere of radius$4Dt ln@lt/A4pDt/b2#%1/2.

The early time behavior ofV(t) can be found from Eq.
~27! and is explicitly

V~ t !'vb~12e2lt!1 16
3 b

2l~pDt3!1/212pbDlt2.
~44!

This implies that the approximate crossover time at which
individual behavior is replaced by overlapping behavior is
D/(lb)2. If lb2/D@1 ~i.e., the average number of particles
injected during the timeb2/D is greater than one! then there
are a great number of particles in the system at early times
and overlapping behavior will be observed, more or less,
over the entire range in time. When this condition is not
satisfied one can expect both individual and overlapping be-
havior. In this case the numberD/(b2l) of injected particles
before the crossover time is much greater than 1. This is in
contrast with our results ford51 in which the regime in
which individual behavior occurs is associated with the con-
dition lt,1, i.e., the average number of injected particles is
less than 1. Such behavior is obvious on the consideration
that the geometry is restricted in one dimension.

As in one dimension, the analytic form of Eq.~43! is the
same as is found whenN particles are injected initially, no
further ones being added@11,12# provided thatN is replaced
by lt. However, in the random walk problem treated in Refs.
@11# and @12# the overlapping behavior is manifested at the
earliest times, after which the behavior becomes disjoint. In
contrast, in the present model in which particles are injected
at different times the early time behavior is disjoint and a
transition is made to overlapping behavior at largert. This is
to be expected on the grounds that at early times there will
be few particles in the system, while implicit in the work
reported on in Refs.@11# and@12# was the assumptionN@1.

C. d>4

In the context of the present problem we have pointed out
that there is a kind of phase transition ind54 dimensions as
also occurs in the behavior of random walk trajectories. A
manifestation of this change is the fact thatt drops out of the
logarithm in Eq.~41!. In this case, in the regime of overlap-
ping behavior we have

Vcoll~ t !}FDt lnS lb2

8D D G2 ~45!

and when the behavior is disjoint

Vind~ t !}b
2Dlt2. ~46!

Hence collective behavior dominates when the condition

lb2

D
@F lnS lb2

D D G2 ~47!

is fulfilled. Again, in agreement with intuition, collective be-
havior occurs from the beginning of the process when the
injection rates are large. If the condition in Eq.~47! does not
hold then only disjoint behavior will be observed over the
entire time span.

If d>5, or equivalentlyn>3/2, we can no longer use the
approximate solution in Eq.~41! since Eq.~40! requires that
r2@4j. When r2!4j we can drop the exponential term in
Eq. ~39! as well as the factorr2/~4j!. The resulting equation
is readily solved, leading to the estimate

r* ~ t !'~lt !1/~2n!. ~48!

However, it is also easy to verify that the transition layer of
the integrand in Eq.~34! is also of the order ofr

*
(t) which

implies, in turn, that overlapping behavior attributable to the
occurrence of such a transition layer cannot occur in dimen-
sions greater than five.

IV. CONCLUDING REMARKS

We have considered qualitative characteristics of the
time-dependent behavior of the volume of the union of
Wiener sausages associated with Brownian particles injected
at random times into a translationally invariant medium at a
single site. This is similar to the problem treated in Refs.@11#
and@12#, in which all of the particles appear in the system at
the same time, but differs from it in that at any given time
there can be an arbitrary number of particles performing
Brownian motion. As in the mathematical development of
those references, the resulting system exhibits a complex be-
havior when considered as a function of time. The results in
both analyses can be described in terms of a progression
from individual to overlapping behavior or vice versa. How-
ever, the critical dimension which defines a boundary be-
tween these two types of behavior differs in the two model
types. In Refs.@11# and @12# individual behavior first oc-
curred at long times ind53 dimensions while in the present
cased54 is a critical dimension, and ford>5 only indi-
vidual behavior is shown to occur over the entire range in
time. We expect that the same qualitative behavior will occur
when the injection sites are different, but localized in an
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appropriate sense, but this generalization has not been ex-
plored by us. A further intriguing, and as yet wholly unex-
plored area, relates to many-particle diffusion in noninteger
dimensions, e.g., in fractals.

A fundamental difference between the problem treated in
the present paper and the model in which all of the particles
are injected simultaneously is the occurrence of different
time scales that are defined by the injection rateTi5l21 and
the radius of the sphere defining the Wiener sausage
Tb5b2/D. In one and two dimensions only the first of these
time scales plays any role because in low dimensions Brown-
ian motion is recurrent. Our detailed analysis shows that in
one dimension disjoint behavior occurs whent,Ti and over-
lap effects manifest themselves whent.Ti . This occurs also
whend52 because of transience although we have not pre-
sented a detailed analysis of that case.

The second time scale becomes important in determining
the crossover time between the two qualitative behavior
types in three dimensions. In three dimensions whenTb@Ti
or equivalently when particles are injected very quickly, the
system will exhibit overlapping behavior for all times except
for a brief initial period during which the behavior is disjoint.
WhenTi@Tb the behavior is disjoint initially, while overlap-
ping behavior occurs after a crossover timeTx5D/(bl)2,
which is large compared toTi . In consequence the number
of particles injected byTx , D/(b

2l) is much greater than 1
and the average volume visited 2pb3[D/(b2l)] 3 is much
greater thanvb . Thus in three dimensions overlapping be-
havior always occurs at sufficiently long times. When the
particle source is weak, disjoint behavior will be observed
for a substantial amount of time.

Individual behavior becomes even more pronounced in
four dimensions. WhenTi@Tb individual behavior can be
expected to occur over the entire time span. In the contrary
case of an intensive injection rateTb@Ti the regime of over-
lapping behavior occurs over the entire range in time.

Our analysis incorporates the use of a specific form for
the probability density of the times between successive in-
jections, i.e.,c(t)5le2lt which leads to the general rela-
tion given in Eq.~19!. We conjecture, but have so far been
unable to prove that at sufficiently long times, Eq.~19! re-
mains valid wheneverc(t) has a finite moment̂t& with the
ratel replaced bŷ t&21. The situation in the case in which
the interinjection times are infinite may also be of some theo-
retical interest. Other extensions of this work that suggest
themselves are to diffusion on fractals and to a calculation of
the second moment of the volume as would be useful for
more direct applications to the trapping problem@17,18#. A
further extension of interest is one in which an external field
is applied which bias the particle motion@19#.
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APPENDIX

Details of the transformation of Eq.~38! to ~39!. We
transform the integral in Eq.~38! by making use of the inte-
gral @20#,

E
0

`

zn21Jn~z!dz52n21G~n! ~A1!

to put it into the form

F ~r ut !'
1

r2n F12
1

b
Q~b!G , ~A2!

whereb5j/r25r 2/(Dt).

Q~b!5
1

2n21G~n!
E
0

`

~12e2bz2!zn23Jn~z!dz. ~A3!

This integral is evaluated by first taking the second deriva-
tive with respect tob, thereby transforming it into an integral
whose value is given in@20#. The second derivative ofQ(b)
is

Q9~b!52
1

2n21G~n!
E
0

`

zn11Jn~z!e2bz2dz

52
4

~4b!n11 e
21/4b. ~A4!

The value ofQ(b) will be found by integrating this relation
twice noting thatQ(0)50 and Q8(0)51 which follows
from Eq. ~A3!. In this way we find thatQ(b) is

Q~b!5b2
b

G~n!
E
1/~4b!

`

e2xxn21dx

1
1

4G~n!
E
1/~4b!

`

e2xxn22dx. ~A5!

When this is substituted into Eq.~A2! and some simple
transformations are made, one finds Eq.~39! as asserted.
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